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Abstract

We have carried out an analysis of singularities in Kohn variational calculations
for low-energy (e+–H2) elastic scattering. Provided that a sufficiently accurate
trial wavefunction is used, we argue that our implementation of the Kohn
variational principle necessarily gives rise to singularities which are not
spurious. We propose two approaches for optimizing a free parameter of the
trial wavefunction in order to avoid anomalous behavior in scattering phase shift
calculations, the first of which is based on the existence of such singularities.
The second approach is a more conventional optimization of the generalized
Kohn method. Close agreement is observed between the results of the two
optimization schemes; further, they give results which are seen to be effectively
equivalent to those obtained with the complex Kohn method. The advantage
of the first optimization scheme is that it does not require an explicit solution
of the Kohn equations to be found. We give examples of anomalies which
cannot be avoided using either optimization scheme but show that it is possible
to avoid these anomalies by considering variations in the nonlinear parameters
of the trial function.

PACS numbers: 02.10.Yn, 34.80.Uv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Despite the absence of an explicit minimization principle, variational methods have been used
successfully in many problems of quantum scattering theory. Such calculations typically
exploit a stationary principle in order to obtain an accurate description of scattering processes.
The Kohn variational method [1] has been applied extensively to problems in electron–atom [2]
and electron–molecule [3, 4] scattering, as well as to the scattering of positrons, e+, by atoms
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[5–7] and molecules [8–10]. It has been widely documented, however, that matrix equations
derived from the Kohn variational principle are inherently susceptible to spurious singularities.
These singularities were discussed first by Schwartz [11, 12] and have subsequently attracted
considerable attention [13–16]. In the region of these singularities, results of Kohn calculations
can be anomalous.

Although sharing characteristics similar to those exhibited by scattering resonances [15],
Schwartz singularities are nonphysical and arise only because the trial wavefunction, used in
Kohn calculations to represent scattering, is inexact [13]. For projectiles of a given incident
energy, anomalous results are confined to particular formulations of the trial wavefunction
and can, in principle, be mitigated by a small change in boundary conditions or some
other parameter. It has also been shown [4, 17, 18] that the use of a complex-valued trial
wavefunction avoids anomalous behavior except in exceptional circumstances. Alternative
versions of the Kohn method have been developed in terms of a Feshbach projection operator
formalism [19] and have been found [20] to give anomaly-free results.

In this paper, we will discuss our investigations of Schwartz-type anomalies for generalized
Kohn calculations involving the elastic scattering of positrons by molecular hydrogen, H2. We
will find that our choice of trial wavefunction contains a free parameter that can be varied in
such a way as to produce singularities which are legitimate in the context of the scattering
theory and do not give rise to anomalous results. Indeed, these singularities can be used to
formulate an optimization scheme for choosing the free parameter so as to automatically avoid
anomalous behavior in calculations of the scattering phase shift. The novelty of determining
the phase shift in this way is that an explicit solution of the linear system of Kohn equations is
not required. We will also develop an alternative optimization and show that the two schemes
give results in close agreement. Further, the results obtained will be seen to be in excellent
agreement at all positron energies with those determined via the complex Kohn method.

We will give examples of anomalous behavior which cannot be avoided with either
optimization and show that the same anomalies appear in our application of the complex Kohn
method. We will discuss circumstances under which these anomalies might occur. We will
also show that such results are nonphysical by considering small changes in the nonlinear
parameters of the trial wavefunction.

Our investigations of singular behavior have been carried out as part of a wider study on
(e+–H2) scattering and annihilation using extremely flexible wavefunctions. Our ability to
recognize clearly and analyze the anomalous behavior is as good for this system as it would
be for a simpler model system, with the advantage that our calculations can be used to provide
meaningful and physically relevant results [10].

2. Theory

2.1. The generalized Kohn variational method

The Kohn variational method is used to calculate approximations to exact scattering
wavefunctions. Determining an approximation, �t , allows a variational estimate, ηv , of the
scattering phase shift to be calculated, the error in which is of second order in the error of �t

from the exact scattering wavefunction, � [21]. The standard approach in Kohn calculations
is to assume an overall form for �t that depends linearly on a set of unknown parameters,
optimal values for which are then determined by the application of a stationary principle.

In our investigations of anomalous behavior in Kohn calculations for (e+–H2) scattering,
we have studied the lowest partial wave of �+

g symmetry. This partial wave has been shown
[8] to be the only significant contributor to scattering processes for incident positron energies
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below 2 eV. The first significant inelastic channel is positronium formation which has a
threshold at 8.63 eV [21]. Although we will consider here positron energies higher than these
thresholds, it is not our intention to provide a comprehensive physical treatment of the scattering
problem taking higher partial waves and inelastic processes into account. The purpose of the
present study is to give a correct and, as far as possible, anomaly-free treatment of the lowest
partial wave. It is important to examine the single-channel case as accurately as possible
as a preliminary for more sophisticated calculations. By not taking into account additional
channels, it is possible that anomalous behavior could occur due to physical inaccuracies in the
trial wavefunction at higher energies. However, we will demonstrate that all of the anomalies
in our results ultimately can be attributed to purely numerical effects.

We have initially used a trial wavefunction having the same general form as described in
our earlier calculations [9],

�t = (S̄ + at C̄ + p0χ0)ψG +
M∑
i=1

piχi, (1)

where [
S̄

C̄

]
=

[
cos(τ ) sin(τ )

−sin(τ ) cos(τ )

] [
S

C

]
, (2)

for some phase parameter, τ ∈ [0, π), with

S = N

λ3 − 1
sin[c(λ3 − 1)] (3)

and

C = N

λ3 − 1
cos[c(λ3 − 1)]{1 − exp[−γ (λ3 − 1)]}. (4)

As before [9], we have carried out calculations using the fixed-nuclei approximation [22, 23],
taking the internuclear separation to be at the equilibrium value, R = 1.4 au. We have labeled
the electrons as particles 1 and 2, taking the positron to be particle 3. The position vector, rj , of
each lepton is described by the prolate spheroidal coordinates [24] (λj , μj , φj ), j ∈ {1, 2, 3}.
These coordinates are defined implicitly in terms of the Cartesian coordinates, (xj , yj , zj ), as

xj = 1
2R

[(
λ2

j − 1
)(

1 − μ2
j

)] 1
2 cos(φj ), (5)

yj = 1
2R

[(
λ2

j − 1
)(

1 − μ2
j

)] 1
2 sin(φj ), (6)

zj = 1
2Rλjμj . (7)

The functions S and C represent, respectively, the incident and scattered positrons
asymptotically far from the target. The shielding parameter, γ , ensures the regularity of C at
the origin and is taken to have the value γ = 0.75. The constant, c, is defined to be c = kR/2,
with k being the magnitude of the positron momentum in atomic units. N is a normalization
constant and can here be regarded as arbitrary. The unknowns, at and {p0, . . . , pM}, are
constants to be determined. The inclusion of the parameter, τ , in �t is a generalization of the
Kohn method due to Kato [25, 26]. This parameter is of only minor physical significance,
playing the role of an additive phase factor in the part of the wavefunction representing the
incident and scattered positrons asymptotically far from the target. However, at each value of
k, the value of τ can be varied to avoid spurious singularities in the Kohn calculations. Away
from the spurious singularities, for an accurate trial wavefunction we can expect the variation
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in the calculated values of ηv over τ to be small. In the original application of the Kohn
method [1], only wavefunctions corresponding to τ = 0 were considered.

The function, ψG, is an approximation to the ground-state wavefunction of the unperturbed
hydrogen molecule and is determined by the Rayleigh–Ritz variational method [27]. In the
calculations presented here, we have taken ψG to be the target wavefunction described in detail
in another of our previous calculations [10], accounting for 96.8% of the correlation energy
[27] of H2. The function,

χ0 = N

λ3 − 1
cos[c(λ3 − 1)]{1 − exp[−γ (λ3 − 1)]} exp[−γ (λ3 − 1)], (8)

is the same as has been used in our earlier calculations [9, 10] and was introduced first by
Massey and Ridley [3]. The remaining short-range correlation functions, � = {χ1, . . . , χM},
allow for the description of direct electron–positron and electron–electron interactions.
Here, we have used the same set of M = 279 correlation functions described in detail in
equations (5)–(8) of [10]. The general form of each function, χi , is

χi = fi(r1, r2, r3) exp[−β(λ1 + λ2) − αλ3] (1 � i � M), (9)

where each fi(r1, r2, r3) is symmetric in the coordinates of the electrons. They are a mixture
of separable correlation functions and Hylleraas-type functions [28] containing the electron–
positron distance as a linear factor. As discussed previously [10], the Hylleraas-type functions
in particular allow for high accuracy of results away from anomalous singularities. Unless
otherwise noted, we have here chosen values of α = 0.6 and β = 1.0 rather than the values
of α = 0.3 and β = 0.7 used earlier [10]. This choice of nonlinear parameters highlights the
interesting aspects of Schwartz-type anomalies more clearly.

In our application of the Kohn variational principle [9, 21], the functional

J [�t ] = tan(ηv − τ + c) = at − 2

πN2R2k
〈�t,�t 〉 (10)

is made stationary with respect to variations in at and {p0, . . . , pM}. Here, we have denoted
the integral 〈�t |(Ĥ − E)|�t 〉 by 〈�t,�t 〉, where Ĥ is the nonrelativistic Hamiltonian for the
scattering system and E is the sum of the positron kinetic energy and the ground-state energy
expectation value of ψG. The integral is evaluated over the configuration space of the positron
and the two electrons. We will, henceforth, use this notation more generally to denote integrals
of the form 〈X|(Ĥ − E)|Y 〉 by 〈X, Y 〉.

The stationary principle imposed upon (10) leads to the linear system of equations

Ax = −b, (11)

where

A =

⎡
⎢⎢⎢⎢⎢⎣

〈C̄ψG, C̄ψG〉 〈C̄ψG, χ0ψG〉 · · · 〈C̄ψG, χM〉
〈χ0ψG, C̄ψG〉 〈χ0ψG, χ0ψG〉 · · · 〈χ0ψG, χM〉

...
...

. . .
...

〈χM, C̄ψG〉 〈χM, χ0ψG〉 · · · 〈χM, χM〉

⎤
⎥⎥⎥⎥⎥⎦

, (12)

b =

⎡
⎢⎢⎢⎢⎢⎣

〈C̄ψG, S̄ψG〉
〈χ0ψG, S̄ψG〉

...

〈χM, S̄ψG〉

⎤
⎥⎥⎥⎥⎥⎦

, (13)
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x =

⎡
⎢⎢⎢⎣

at

p0

...

pM

⎤
⎥⎥⎥⎦ . (14)

Solving (11) determines the values of at and {p0, . . . , pM}, allowing 〈�t,�t 〉 and, hence,
ηv to be calculated via (10). However, as has been discussed extensively (see, for example,
[9, 29–31]), the particular form of the functions, fi(r1, r2, r3), used in our calculations does
not, in general, permit analytic evaluation of the integrals comprising the matrix elements of
A and b. Sophisticated methods to determine these integrals numerically have been developed
[29–31]. However, the numerical approaches can give only accurate approximations to the
exact values of the integrals, so that small errors in determining the elements of A and b are
unavoidable.

2.2. Singularities

Singularities in our generalized Kohn calculations arise from zeros of det(A), the determinant
of (12). Under these circumstances, the linear system (11) has no unique solution. Close to
these singularities, it is well known [11–15] that values of ηv obtained by solving (11) can
be anomalous; small errors in the elements of A or b can correspond to large errors in the
solution, x, particularly when A is close to singularity in a sense that can be defined formally
in terms of the condition number [32, 33] of A. A more detailed discussion of the condition
number will be given in section 3.2.

It is appropriate at this point to define a convention that we will adopt in our discussion
of singularities in the generalized Kohn method. The type of spurious singularities mentioned
by Schwartz [11, 12] here corresponds to zeros in det(A) for the particular case when τ = 0.
We will, however, find it convenient to label as Schwartz singularities those zeros of det(A)

occurring at any τs ∈ [0, π) which give rise to anomalous behavior in the calculations of ηv(τ )

when τ is near τs . This is an important clarification for the following reason: we claim that,
because of our inclusion of τ in �t , there exist zeros of det(A) which are not spurious and do
not correspond to anomalous behavior in the values of ηv . We will refer to such singularities
as anomaly-free singularities.

To understand how anomaly-free singularities might arise, it is helpful to consider the
component, �0, of the exact scattering wavefunction, �, corresponding to the lowest partial
wave. �0 can be expanded as

�0 = (S̄ + aC̄)ψ +
∞∑
i=1

piζi, (15)

where ψ is the exact ground-state target wavefunction and the complete set of correlation
functions, {ζi}, describes exactly the leptonic interactions at short range. As noted by Takatsuka
and Fueno [16] in their Kohn calculations for single-channel scattering, the exact phase shift,
η0, determined by �0 is independent of the choice of τ in (15). As a result, there is precisely
one value, τ0 ∈ [0, π), at each positron energy such that

η0 − τ0 + c = ±n
π

2
, (16)

for some odd value of n > 0, where either +n or −n is chosen to keep η0 ∈ (−π/2, π/2]. The
value of cot(η0 − τ + c) will then pass continuously through zero as τ passes through τ0.
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Returning to the trial wavefunction (1), for nonsingular A, it can be shown using (10) and
(11) that

cot(ηv − τ + c) = πN2R2k

2

(
det(A)

x̂ · b − det(A)〈S̄ψG, S̄ψG〉
)

, (17)

where we have defined

x̂ = [adj(A)]b, (18)

with adj(A) being the adjugate matrix of (12). We note that adj(A) exists even if A is
singular. In section 3.1, we will provide numerical evidence that the limit of cot(ηv − τ + c) as
det(A) → 0 exists and is equal to zero. We can, therefore, assert a correspondence between
zeros of cot(ηv − τ + c) and zeros of det(A).

Suppose that, at each k, there are mk values of τ making A singular, which we will denote
by ϒk = {

τ (k,1)
s , τ (k,2)

s , . . . , τ (k,mk)
s

}
. If our previous assertion is correct, each element of

ϒk will correspond to a zero of cot(ηv − τ + c). We can reasonably claim that if �t is, in
some sense, sufficiently accurate, precisely one of these zeros will correspond to the zero of
cot(η0 − τ + c) necessarily found at τ0 for �0. Assuming that this is the case, we will denote
the element of ϒk corresponding to τ0 by τ̂s . Values of ηv determined in the generalized
Kohn method should then vary slowly and smoothly with τ as it passes through τ̂s . Indeed,
as τ → τ̂s from either side, we would expect the values of ηv calculated by solving (11) to
converge to the value, η̂v , determined directly from

η̂v − τ̂s + c = ±n
π

2
, (19)

where n is again chosen so that η̂v ∈ (−π/2, π/2].
In the following section, we will present results of generalized Kohn calculations

exhibiting anomalous behavior due to Schwartz singularities and, further, demonstrate
empirically that the anomaly-free singularities do exist and that values of τ̂s can be found.
At each k, choosing τ = τ̂s(k) then defines an optimization of τ that will be seen to avoid
anomalies in ηv due to Schwartz singularities.

3. Results

3.1. Calculations of phase shift

In our generalized Kohn calculations, we have obtained values of ηv ∈ (−π/2, π/2] using
(10) and (11), for a range of positron momenta. Spurious singularities have been accounted
for by performing calculations over p different values of τ equidistant in the range τ ∈ [0, π).
For the results presented here, we have taken p = 1001. Calculations for a large number of τ

values can be carried out with minimal additional computational effort, as it can be shown that
the matrix elements of A and b for any τ are readily available from the elements of A(τ = 0)

and b(τ = 0) via an orthogonal transformation. It is helpful to carry out calculations for large
p, as it allows a detailed examination of the behavior of ηv very close to Schwartz singularities
to be made. Values of ηv over the p values of τ are given in figure 1 for k = 0.2, corresponding
to a positron energy of 0.54 eV. Anomalous results due to a Schwartz singularity are clearly
evident around τ ∼ 2.87. We have indicated the value of τ giving rise to the singularity by a
dashed line. Away from this value of τ , the variation in ηv is small.

In figure 2, we have studied the behavior of cot(ηv − τ + c) close to the singularity
at τ ∼ 2.87 by calculating cot(ηv − τ + c) for 101 values of τ equidistant in the range
τ ∈ [2.868, 2.872]. We have again indicated the position of the singularity in this figure by a
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Figure 1. Values of ηv(τ ) at k = 0.2.

2.868 2.8685 2.869 2.8695 2.87 2.8705 2.871 2.8715 2.872
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2

0

0

0

0.1

0.1

0.2

τ

c
o

t(
η v

τ+
c
)

.

.

Figure 2. The behavior of cot(ηv − τ + c) at k = 0.2 for values of τ either side of a singularity.

dashed line. The results shown in the figure suggest that cot(ηv − τ + c) converges smoothly
to zero as τ → τs from either side, supporting the assertion made in section 2.2 regarding the
correspondence of the zeros in cot(ηv − τ + c) and det(A). We have found that behavior of
the type shown in figure 2 is a general feature of the calculation.

Using (2) and (12), it is straightforward to show that

det(A) = A(k) sin2(τ ) + B(k) sin(τ ) cos(τ ) + C(k) cos2(τ ), (20)

where A(k),B(k) and C(k) are constants with respect to variations in τ . For a given positron
momentum, the constants, A,B and C, can be determined by calculating det(A) directly
from (12) at particular values of τ . Strictly speaking, in our calculations we have evaluated
det(Ã), with Ã being the approximation to A whose elements have been determined using
numerical integration. We will assume that the values of A,B and C are not unduly sensitive
to small changes in the elements of A and henceforth take det(A) and det(Ã) to be essentially
equivalent.

At each k, provided that A �= 0, the values, τs , making A singular can be found by solving
the quadratic equation in tan(τs),

A tan2(τs) + B tan(τs) + C = 0. (21)

If only τ is varied, and unless A = B = C = 0, there will be no more than two zeros of det(A)

in the range τ ∈ [0, π). Figure 3 shows det(A) as a function of τ at k = 0.2. The scale on
the vertical axis is unimportant, since the value of det(A) at each k can be made arbitrarily
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0 0.5 1 1.5 2 2.5 3
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Figure 3. Values of det(A) at k = 0.2 for 0 � τ < π .

0 0.5 1 1.5 2 2.5 3
0
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0.4
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0.8

1

k

τ
s

Figure 4. The zeros of det(A) for 0.01 � k � 1.

large or small by a choice of the normalization constant, N. The result of interest in the figure
is that it indicates two values of τ at which A is singular. The anomalous behavior in figure 1
corresponds directly to the singularity observed at τ ∼ 2.87 in figure 3. However, there are
no anomalies in figure 1 corresponding to the singularity at τ ∼ 1.90 in figure 3, suggesting
that this singularity is of the anomaly-free type described in the previous section.

We have examined this phenomenon at other values of the positron momentum.
Figure 4 indicates the roots of (21) for 100 different positron momenta equidistant in the
range 0.01 � k � 1, corresponding to a positron energy range from 1.36 meV to 13.6 eV.
For the majority of positron momenta considered here, A,B and C are such that there are two
values of τs at each k, the exceptions being k = 0.65 and k = 0.66, for which we have found
no real-valued solutions of (21). It is apparent from figure 4 that the roots of (21) lie in two
families of curves. The first family spans the entire range, τs ∈ [0, π), for 0.01 � k � 1.
The second family is confined to values of τs in the range τs ∈ [1.5, 2.1] for all positron
momenta considered here. For almost every k where real roots exist, there is precisely one
root corresponding to each family. The exception is the result at k = 0.71, where there is an
irregularity in the otherwise smooth behavior of τs over k. We will discuss this phenomenon
in more detail in section 3.2.

To illustrate anomalies in ηv at different values of k, it is convenient to define the function,

�(k, τ) = |ηv(k, τ ) − 〈ηv〉(k)|, (22)

8
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Figure 5. Values of �(k, τ) for 0.02 � k � 1.

1.85 1.9 1.95
0.1861
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0.1863

0.1864

0.1865

0.1866

0.1867

τ

η v

Figure 6. Convergence of [——] ηv(τ ) to [+] η̂v as τ → τ̂s at k = 0.2.

where, at each k, 〈ηv〉 is the median value of ηv(τ ) evaluated over the p values of τ . �(k, τ)

measures the degree to which a given ηv(k, τ ) can be considered anomalous. The values of
�(k, τ) are shown in figure 5. For clarity, we have included results only for 50 values of
k equidistant in the range 0.02 � k � 1 rather than the 100 values used for figure 4. The
omission of the results for k = 0.71 in this figure also allows us to delay until section 3.2, the
discussion of the atypical singularity observed at this value of k in figure 4.

It is clear from figure 5 that anomalies are observed corresponding to only the first of the
two families of curves identified from figure 4. This is strong evidence that the curve for which
no anomalies are observed comprises legitimately occurring singularities. It is interesting to
note that the size of the anomalies due to the Schwartz singularities becomes noticeably
smaller in figure 5 as they tend to coincide with the apparently anomaly-free singularities.
Denoting by τ (1)

s (k) the values of τ describing the anomaly-free curve, at each k we expect
that, as τ → τ (1)

s , the values of ηv calculated over τ will converge smoothly to the value, η̂v ,
determined directly from (19) and taking τ̂s = τ (1)

s . We have found in our calculations that
this is indeed the case, and an example is shown in figure 6 for k = 0.2.
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Figure 7. Values of Im[τs ] for 0.64 � k � 0.67.

We can reasonably conclude that we have encountered anomaly-free singularities. Before
we can develop an optimization for τ based on these singularities, however, there are two
outstanding issues to be addressed. Firstly, we have already noted that no real-valued solutions
of (21) were found at k = 0.65 and 0.66. This is potentially problematic as, for a sufficiently
accurate trial function, we should expect at least one real root of (21) at each k, corresponding
to an anomaly-free singularity. However, inspection of figure 4 shows that the solutions of
(21) are close together in the regions either side of k = 0.65 and 0.66. Were the two roots to
coincide at some k, then B2 = 4AC. Near a point of coincidence, B2 ∼ 4AC and small errors
in the values of A,B and C could erroneously give rise to (B2 − 4AC) < 0. The values of
τ solving (21) at k = 0.65 and 0.66 were found to be, respectively, τs ∼ 2.02 ± 0.01i and
τs ∼ 1.98 ± 0.03i. In both cases, the fact that Im[τs] 	 Re[τs] suggests that singularities do
genuinely exist for τ ∈ R at these values of k, but small errors in our calculations of A,B and C
due to inexact numerical integration have prevented us from finding them. Having investigated
this problem in more detail, in figure 7 we show the calculated values of Im[τs] for 31 values
of k equidistant in the range 0.64 � k � 0.67. There is a clearly defined region of k where
no real roots of (21) have been found. The smoothness of Im[τs] over k in this region does
not necessarily preclude the notion that the failure to find real-valued solutions is due to small
numerical errors in our calculations. It is conceivable that inaccuracies in the calculated values
of A,B and C could also arise from systematic errors in the algorithm [34] used to calculate
the determinants. Nevertheless, the results illustrated in figure 7 are interesting; their exact
origin may be speculated upon and will remain a subject of our ongoing investigations.

The second difficulty concerns the choice of τ̂s from the two available solutions of (21).
A method is needed for identifying at each k, the root of (21) corresponding to a legitimate
singularity. This can easily be achieved by inspecting values of ηv at values of τ either side of
each singularity, although this approach is not ideal as it requires solutions of (11) to be found.
In practice, at each k, it should be possible to determine by inspection which of the two phase
shifts is anomaly-free by examining corresponding results at singularities for nearby values of
k. For example, figure 4 clearly shows that only one curve in the (τ, k) plane corresponds to a
physically acceptable variation of phase shift over k.

With these considerations in mind, we claim that choosing τ = τ̂s at each k defines a
consistent optimization that can be used to avoid anomalies due to Schwartz singularities
appearing at other values of τ . To evaluate the success of this approach, we have found it
helpful to consider an alternative optimization of τ . For the calculations of ηv carried out with
p = 1001, choosing the value of τ at each k giving rise to the median phase shift, 〈ηv〉, should
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Figure 8. A comparison of optimization schemes for τ , [——] 〈ηv〉(k) and [×] η̂v(k).

also mitigate anomalous behavior. In figure 8, we have compared results for 〈ηv〉(k) and η̂v(k)

for momenta in the range 0.01 � k � 1. Here, of the two candidates for η̂v corresponding
to the two singularities, at each k we have chosen the one whose absolute value is closest
to |〈ηv〉|. For clarity, we have included in the figure values of η̂v(k) for only 50 values of k
equidistant in the range 0.01 � k � 0.99.

Both optimization schemes successfully avoid anomalous behavior at most values of k,
and there is good agreement between the two sets of results at all momenta. However, the
intriguing feature of the figure is the anomaly appearing in both sets of results at k ∼ 0.71. For
〈ηv〉(k), we have shown this anomaly in greater detail by including in the figure results of a
further 100 Kohn calculations for momenta equidistant in the range 0.7 � k � 0.72, although
it is practical to consider henceforth only the anomalous behavior occurring precisely at
k = 0.71. We believe that the anomaly shown in figure 8 is of a different type to those
shown in figure 5, which are due to singularities found by varying only τ at a given k. In the
following section, we will examine the circumstances under which persistent anomalies of the
kind shown in figure 8 could appear before going on to discuss methods designed to avoid
them.

3.2. Persistent anomalous behavior

It is often claimed that anomalous results observed in the region of singularities arise from
A having a determinant close to zero. Statements of this kind can be misleading, as the
determinant of any nonsingular A can be made arbitrarily close to zero by an appropriate
scalar multiplication, without altering the sensitivity of the solution, x, to small errors in the
elements of A or b. A better measure for identifying regions where anomalies may occur is
the condition number, κ(A), defined for nonsingular A. The condition number is independent
of the normalization constant, N, and for the linear system (11) is defined as the maximum
ratio of the relative error in x and the relative error in b. Formally, it can be shown that

κ(A) = ‖A‖‖A−1‖, (23)

with respect to some matrix norm, ‖A‖ [32]. The value of κ(A) is dependent upon the choice
of norm. In our calculations, we have considered the matrix 1-norm [32] of A,

‖A‖1 = max
1�j�(M+2)

M+2∑
i=1

|aij |, (24)

where aij is the element in the ith row and j th column of A. In what follows, the particular
choice of the 1-norm in our calculations will implicitly be assumed.

11
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A matrix with a large condition number is said to be ill conditioned, and the solution of
the corresponding linear system may not be reliable if the elements of A and b are not known
exactly. For any invertible A, the condition number can be used to formalize the definition
of closeness to singularity in the following way. If �A is defined to be any matrix such that
A + �A is singular, then the relative distance to singularity, �(A), for A, is defined [32] to be

�(A) = min

(‖�A‖
‖A‖ : det(A + �A) = 0

)
. (25)

This definition holds for any consistent norm. Further, if �(A) and κ(A) are evaluated using
the same choice of norm, it can be shown [32] that

�(A) = [κ(A)]−1. (26)

In section 3.1 we noted that (21) has, in general, no more than two zeros if only variations
of τ ∈ [0, π) are considered. However, if A = B = C = 0 then det(A) is identically zero
independently of τ and no consistent value of phase shift can be calculated, either by solving
(11) or directly from (19). There is no obvious physical reason why this circumstance should
arise at any k ∈ R. However, it is conceivable that A,B and C could coincidentally be close
to zero, in some sense, over a narrow range of k. Small errors in the evaluation of A,B and
C could then give rise to both unreliable solutions of (21) and persistent anomalies in the
calculation of ηv due to ill conditioning in the Kohn equations (11). To see how the latter case
arises, using (20) we note that

C = det[A(τ = 0)], (27)

A = det
[
A

(
τ = π

2

)]
, (28)

B = 2 det
[
A

(
τ = π

4

)]
− A − C, (29)

so that the notion of A,B and C being close to zero is immediately formalized in terms of
�(A) at τ = 0, τ = π/4 and τ = π/2.

In our calculations, we have used a numerical algorithm [35] to calculate �a(A), an
estimate of �(A). Values of �a(A) at τ = 0, τ = π/4 and τ = π/2 are shown in figure 9
for 100 values of k in the range 0.7 � k � 0.72. Values of �a(A) for τ = 0 and τ = π/4
are anomalously small at k ∼ 0.71, with the values for �a(A) at τ = π/2 also passing
through a clear minimum at k ∼ 0.711. Ordinarily, we would not expect ill conditioning to
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occur over a very broad range of τ at a given k. At k = 0.71, the small values of �a(A) at
τ = 0, τ = π/4 and τ = π/2 therefore point to a manifestation of ill conditioning which
is unusually widespread in τ . In fact, in our calculations we have failed to find any value of
τ ∈ [0, π) such that A is sufficiently well conditioned to avoid anomalous results at k = 0.71.
We have also confirmed that A,B and C all pass through zero at least once between k = 0.71
and 0.7104.

We can conclude that both optimization schemes developed in section 3.1 successfully
avoid anomalies due to Schwartz singularities whose existence depends only upon the choice
of τ . However, at certain values of k,A can become close to singularities whose existence is
independent of τ , resulting in anomalies in the calculation of ηv that persist even after τ has
been optimized. In attempting to address this problem, a number of methods are available.
In principle, anomalous behavior can be reduced dramatically by allowing the Kohn trial
wavefunction to be complex-valued [4, 17]. An alternative approach for avoiding anomalies
persistent in τ is to make a small change in some other parameter of the trial wavefunction.
We will explore both of these techniques in the following section.

3.3. The complex Kohn method

The complex Kohn method is an extension of the original variational approach in which
the boundary conditions of the trial wavefunction are complex. It was originally believed
[4, 17] that this method was anomaly-free, although anomalies were subsequently reported
by Lucchese [18]. For our complex Kohn calculations on (e+–H2) scattering, we have used a
trial wavefunction, � ′

t , of the form

� ′
t = (S̄ + a′

t T̄ + p′
0χ0)ψG +

M∑
i=1

p′
iχi, (30)

where

T̄ = S̄ + iC̄, (31)

with the functions ψG and � = {χ1, . . . , χM} being the same as in (1). The unknowns a′
t

and {p′
0, . . . , p

′
M} will not, in general, be real. Application of the variational principle to (30)

leads to a matrix equation analogous to (11),

A′x ′ = −b′, (32)

where A′ and b′ are identical to A and b, but for the function, T̄ , replacing C̄ in (12) and (13).
The determinant, det(A′), conveniently reduces to

det(A′) = D(k) e−2iτ , (33)

where

D = (A − C) − iB (34)

is a complex constant with respect to variations in τ . The values of det(A′) then describe a
circle of radius |D| in the complex plane for variations of τ ∈ [0, π). Hence, singularities
are obtained only if both the real and imaginary parts of D are zero; they can neither be
located nor avoided by varying only τ . We would therefore expect anomalous results due to
singularities arising from the choice of τ at a given k to be eliminated in the complex Kohn
method. However, from (34) we would also expect D to be close to zero at k = 0.71, in the
same sense that A,B and C have already been seen to be close to zero at this value of k. It
is therefore likely that the anomalies already seen to occur due to relationships between A,B
and C rather than the choice of τ will persist even in the complex Kohn method.
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We have obtained values of ηv using the trial function, � ′
t . We have found that the

differences in the calculated values of ηv at different values of τ ∈ [0, π) are negligible, for
all positron momenta considered here. Without loss of generality, we can regard the complex
Kohn calculation as effectively independent of τ and choose τ = 0 for simplicity. In figure 10,
we have compared results for ηv(k, τ = 0) obtained with the trial function, � ′

t , with the results
for 〈ηv〉(k) obtained in section 3.1 with �t . The results of the two methods are essentially
equivalent at all positron momenta, with the optimized results for �t differing from the results
for � ′

t by no more than 0.1% at each k. As expected, the complex Kohn method automatically
avoids anomalies at most values of k without the need for an optimization of τ . Nevertheless,
the use of the complex trial function has predictably failed to remove the persistent anomaly
at k = 0.71. In figure 11, we verify that �a(A

′) is anomalously small at k ∼ 0.71 for τ = 0.
We have found that differences between the results shown in figure 11 and values of �a(A

′)
calculated at other values of τ are negligible.

Having failed to find a systematic remedy for the persistent anomalous behavior, we
consider a more ad hoc approach. It should be possible to avoid any Schwartz-type anomaly
by some variation of parameters in the trial wavefunction. We have found that variations in τ

are not always successful, but other candidates exist. In our complex Kohn calculations, we
have varied the values of α and β in (9), fixing τ = 0. Recall that the values of the parameters
have so far remained fixed at α = 0.6 and β = 1.0. We now consider the results of Kohn
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calculations carried out for 31 different values of α in the range α ∈ [0.59, 0.605] and 61
different values of β in the range β ∈ [0.65, 1.25].

To illustrate persistent anomalous behavior, it is helpful to define a function analogous
to (22),

�′(α, β) = |ηv(α, β) − ηv(α)|, (35)

where, for each of the values of α considered, ηv(α) is the median value of ηv evaluated across
the range of values of β. Values of �′(α, β) are shown in figure 12, from which it is clear that
persistent anomalies appear distributed about a curve in the (α, β) plane. For values of α and
β away from this curve, the calculations are free of anomalies. Hence, a small change in the
values of α or β can indeed be shown to successfully avoid persistent anomalous behavior.

Finally, we consider briefly that the shielding parameter, γ , in (4) and (8) might also be
varied in an effort to avoid anomalous behavior. Values of ηv at k = 0.71, α = 0.6 and β = 1.0
for 0.5 � γ � 1.0 are shown in figure 13. It is apparent that small changes in the value of
γ have relatively little effect on the persistent anomaly at k = 0.71. This is not unexpected,
being consistent with the findings of Lucchese [18], who investigated the effect of varying a
parameter analogous to γ in his model potential calculations. He noted that singularities due
to the choice of γ occurred when the values of γ and α were not similar, most typically when
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γ 	 α. With this in mind and from inspection of figures 12 and 13, we can conclude that
the anomaly observed in figure 10 is due primarily to the choices of α and β rather than the
choice of γ .

4. Concluding remarks

We have carried out a thorough examination of singularities and related anomalous behavior in
generalized Kohn calculations for (e+–H2) scattering. We have argued that singularities do not
always occur spuriously and that variational calculations of the scattering phase shift can be
anomaly-free at these singularities. Subsequently, we have developed an optimization scheme
for choosing a free parameter of the trial wavefunction allowing anomaly-free values of the
phase shift to be determined without the need to solve the linear system of equations derived
from the Kohn variational principle. This approach has been seen to be largely successful,
giving phase shifts in close agreement with those determined by a conventional generalization
of the Kohn method, as well as those obtained with the complex Kohn method.

Persistent anomalies in both sets of calculations have been identified and attributed to
singularities that cannot be avoided with any choice of the parameter, τ . Further, we have
found that our implementation of the complex Kohn method is susceptible to the same behavior.
We have demonstrated, however, that persistent anomalies can be avoided by small changes
in the nonlinear parameters of the short-range correlation functions. Hence, by studying the
behavior of A,B and C over k, we can predict the appearance of persistent anomalous behavior
quantitatively and avoid it by an appropriate change in α or β.
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